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An approach for predicting trends in the toughness of particulate filled polymers 
has been presented. The approach is based on independent knowledge of the con- 
stitutive law that describes the non-linear behaviour in the process zone. An ideal- 
ized law is used to demonstrate expected trends with particulate volume fraction 
and size. The trends are correlated with experimental data. Some discussion of the 
non-linear process zone mechanisms, such as debonding and microcracking, is 
presented as a basis for developing more realistic constitutive laws and hence, 
providing superior predictions of toughness. 

1. Introduction 
The toughness of polymeric solids can be 
enhanced by the incorporation of  glass, or other 
hard second phases [1-3]. The toughening has 
been attributed to a number of different mechan- 
isms, such as crack bowing, debonding and 
microcracking. The present article attempts an 
interpretation predicated on the recent obser- 
vation [3] that substantial debonding of  the 
second phase occurs around the crack tip and 
hence, that the toughening relates in some man- 
ner to the extent of  debonding. 

Debonding results in a non-linear stress- 
strain curve and a reduced secant modulus [3, 4] 
as depicted in Fig. 1. Representation of this 
deformation behaviour by a constitutive law 
allows computation of  the toughness, without 
detailed knowledge of  the associated microstruc- 
tural processes [5, 6]. Specifically, during initial 
propagation of  a sharp precrack, a frontal 
process zone develops as the load is applied and 
material elements within the process zone 
experience monotonic straining (Fig. 2). For  this 
condition, J is generally path independent [5] 
and thus, J~, determined on a contour remote 
from the crack tip (in the elastic zone for small 
scale yielding) and Jt for a contour in the 
immediate vicinity of  the crack tip (Fig. 2) are 
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equal: 
Jo~ = art (l) 

The stress intensity factors, K 2 and Kt 2, are thus 
related by: 

K~/E = K~/E, r (2) 

where E is Young's modulus and ET is the tan- 
gent modulus of  material elements at the crack 
tip. Consequently, since ET < E (Fig. 1), 
Kt < K~, and hence, the crack tip stresses are 
reduced in the presence of  the debond process 
zone. However, the reduced stress does not 
necessarily coincide with an enhanced tough- 
ness, because the debonding process degrades 
the material in the process zone ahead of  the 
crack [6]. Countervailing influences thus operate 
within a frontal process zone. 

Propagation of  the crack into the debond 
zone results in a process zone wake (Fig. 3), 
because the stress-strain relation is non- 
reversible (Fig. 1). In the presence of a steady- 
state wake (Fig. 3), the energy density associated 
with a contour passing through the wake differs 
from that for a crack tip contour, such that [5]: 

Joo = Jt q- 2 I2 U(y) dy (3) 

where h is the width of  the debond zone (Fig. 3) 

0022-2461/85 $03.00 + .12 �9 1985 Chapman and Hall Ltd. 



Figure 1 A non-linear stress-strain curve typi- 
cal of a particulate filled polymer. 
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and U(y)  is the residual energy density in a strip 
dy in the remote wake. The energy density U(y)  
is simply the area under the stress-strain curve 
given in Fig. 1. The change in J induced by the 
wake is, in fact, a direct measure of  the hysteresis 
in the stress-strain curve, because material ele- 
ments that traverse from the front of'the crack to 
the remote wake (i.e. the energy change brought  
about  by crack advance) are exposed to a com- 
plete stress-strain cycle (Fig. 3). 

Computat ions  of  the stress-strain hysteresis 
in the debond process zone can be used to 
predict the change in Jr. The increase in tough- 
ness can then be determined by equating Jt to the 

local crack propagat ion resistance of the 
debonded material. The computat ions are 
strictly valid when the components of  the stress 
tensor are consistent with a path independent J 
for the frontal zone. Such conditions are 
assumed to be approximately valid for the 
polymer systems of  present interest. 

The analysis presented in this article is based 
on the stress-strain characteristics of  the 
material, as outlined above. However, some con- 
sideration is first given to the debonding and 
deformation mechanisms that determine the 
observed stress-strain relations. 
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Figure 2 A frontal process zone with an 
associated stress-strain curve for elements 
within the zone; also shown are two J 
contours. 
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Figure 3 An extended zone indicating the 
hysteresis in the stress-strain curve for 
material elements in the wake. 

2. N o n - l i n e a r  s t r e s s - s t r a i n  r e l a t i o n s  
f o r  f i l l ed  p o l y m e r s  

Recent studies have revealed that the onset of 
non-linearity in the stress-strain curve for filled 
polymers coincides with the debonding of the 
second phase [3, 4]. Debonding presumably 
occurs when the applied strain at the interface 
overcomes both the initial thermal contraction 
mismatch strain and the decohesion strain. For 
a relatively rigid second phase, such as glass, the 
principal strain concentration in the polymer 
occurs in the regions between closely spaced 
particles (Fig. 4). Specifically, since nearly all of 
the strain is accommodated by the polymer, a 
uniaxial applied strain, e~o, is magnified in the 

region between the particles by: 

stS,oo "' (1 - 2R/l)-' (4) 

where l is the centre-to-centre spacing between 
particles and R is the sphere radius. For 
example, strain concentrations in the range 4 to 
10 frequently occur in materials with a volume 
loading of ~ 0.3. Such strains are well into the 
non-linear deformation response regime of the 
matrix (Fig. 1) [4]. It seems reasonable, 
therefore, to regard debonding as a 
phenomenon that occurs primarily in regions 
between closely spaced particles and, further- 
more, that appreciable permanent deformation 
of the intervening matrix occurs after debonding. 

R 
DEBOND 

STRAIN CONCENTRATION ~ - -  
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APPLIED STRAIN OCCURS BETWEEN CENTRES 

Figure 4 The strain concentration between 
closely spaced particulates and the associated 
interface debonding. 



Figure 5 A micrograph illustrating debonding between closely 
spaced particulates in the crack tip process zone. The white 
lines outlines the crack. Regions A, B are the debonded and 
bonded zones, respectively [4]. 

Plastic deformation of the debonded matrix 
(analogous to plastic hole growth [7]) should 
result in permanent debonding and hence, the 
presence of residually debonded particles. A 
concomitant dilatation is expected in the process 
zone wake. 

Experimental observations substantiate that 
debonding predominates in the region between 
particles [4] (Fig. 5). Furthermore, evidence of 
optical interference in the wake [4] is consistent 
with the presence of residual debonding. I t  is 
thus concluded that the non-linear loading 
features of the stress-strain curve (such as the 
tangent modulus) are dominated by matrix plas- 
ticity between debonded closely spaced particles; 
whereas the unloading (secant) modulus is 
governed by the elasticity of the composite con- 
taining debonded particles. 

Micro-cracking or crazing of the matrix may 
constitute an alternative non-linear deformation 
mechanism. In this instance, the residual misfit 
strain due to differential shrinkage between the 
matrix and the particles results in residual tan- 
gential tensile stresses. Consequently, since the 
applied load imposes additional tangential ten- 
sile stresses, the potential for matrix microcrack- 
ing between particles is readily visualized. Such 
microcracks would relieve the residual stress and 
be subject to residual opening [6]. Hence, non- 
linear behaviour accompanied by permanent 
dilatation and a reduced secant modulus would, 
again, be expected. 

The observed stress-strain characteristics of 
particulate filled polymers are thus qualitatively 
explicable in terms either of enhanced plasticity 
of the matrix between debonded particles or of 
microcracking between particles. Specific dis- 
tinction between these processes is not 
attempted in the subsequent analysis. 

3. The fracture toughness 
3.1. The energy density in the wake 
The energy density and hence, the toughness, 
may be computed from the hysteresis in the 
stress-strain curve provided that an appropriate 
constitutive law can be specified. For simplicity, 
the loading curves pertinent to both the shear 
and dilatational deformation of the particulate 
filled polymers are assumed to exhibit a common 
form, suggested by the uniaxial stress, strain 
curve, i.e. 

o 0. = O'y(s n (5) 

where e~ is the inelastic strain, ~y is the uniaxial 
yield strength, and n is a unique hardening coef- 
ficient. Unloading is assumed to be linear, with 
a secant modulus, E~. With this idealization, 
many of the complexities of the toughening 
analysis [5-7] are eliminated, while still provid- 
ing a useful perspective on trends in toughness 
with microstructure. The energy density based 
on Equation 

U(y) -- 

5 has the form 

f aod8~ 

O'y 8 n + l  _ _  _ _  

(n + I) 

T i) 

2 2n 0"y 8 ,  

2E, 

ay8~ J(n + 1)] 
2E s j (6) 

where e. is the maximum inelastic strain experi- 
enced by a material element within a strip, dy, 
distance y from the crack plane. The present 
choice of e. is predicated upon the non-linear 
solution for the principal strains in a crack tip 
field. For the present, idealized stress-strain law, 
the inelastic strains are [8, 9]: 

I- J 
: L/2GrJ (7) 

where r is the distance from the crack tip, In -- 
10(0.13 + n) ~/2- 4.8n, and E(0) is the non- 
dimensional parameter given in [9]. Hence, the 
peak inelastic strain on the y plane becomes: 
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F___._~J ] 1/(n+ 1) 
e, ~- 2 (8) 

kin ~'Y YA 
The energy density is thus: 

2 "+1 J 
U(y) = (n + 1) I, 

I~ (n + 1)(aYe( J ~('-')/("+')] 
x 2y \ ~ / \ a - ~  y /  (9) 

and the net energy in the wake is: 

U =- f~oU(y)dy 
2 n+l j 

n + l l ,  

(~0) / \ /  " X(n-1)/("+l) 
x In h (n +4 1)2 (EsC)/ff-~n)aY a 

X ['r~n_ l)l(n + 1) 1 h(n_i)/(n+l)]} (lO) 

where r0 is the minimum distance from the crack 
plane at which the matrix between debonded 
particles experiences permanent deformation or 
microcracking. This distance should be of the 
order of the particle radius, because a crack 
typically deflects around one pole of the particle, 
leaving the deformed matrix at the opposite 
pole, in the wake. An upper bound energy (that 
neglects the recovery of elastic energy on 
unloading) is thus: 

2"+' J l n ( R  h-) (11) 
U -  (n + 1 - - ~  I. 

The magnitude of J now requires further con- 
sideration. As evident from Equation 3, J varies 
within the zone from art to Jo~, due to the 
presence of the wake. However, since the defor- 
mation closest to the crack plane has the maxi- 
mum influence on the net energy (U(y) --, oe as 
y ~ 0, Equation 9), Jt is selected for present 
purposes. 

3.2. Material  d e g r a d a t i o n  
The presence of debonding in the process zone 
degrades the local crack propagation resistance 
of the material, because cracks deflect into the 
debonded material at the poles of the particles. 
If  debonding occurs at all particles immediately 
ahead of the crack tip, the area fraction of 
debonded material along the crack plane will be 

of the order of the volume fraction, f ,  of par- 
ticles. Debonding represents a loss of section 
and hence, the simplest expression for the tough- 
ness degradation is [6]: 

jc ~ = jo(1 - f )  (12) 

where J~ is the degraded fracture resistance and 
jo is the reference fracture resistance of the 
matrix. 

The degradation will not normally be as large 
as that determined by Equation 12 because some 
particles may not debond and a local toughening 
due to crack bowing [10] may then occur. Never- 
theless, Equation 12 is used as the most con- 
venient estimate for further analysis. 

3.3. The toughness 
3.3. 1. Init ial growth 
The fracture toughness for initial growth of the 
crack, with a frontal process zone is simply 
obtained by equating art in Equation 1 to Jc t in 
Equation 12 giving: 

J[ ~- J ~  (13) 

The toughness is thus predicted to be slightly 
reduced, due to the degradation of the material 
by debonding. However, as noted above, the 
degradation is not likely to be as substantial as 
that given by Equation 12. Hence, circumstances 
could be envisaged wherein the reduced near tip 
stresses (Equation 2), allow a small increase in 
toughness. Nevertheless, the effect should be 
small and, for all practical purposes, it is con- 
cluded that initial growth occurs at a toughness 
similar to that of the unreinforced matrix. 

3.3.2. Steady state growth 
When the crack has extended substantially into 
the debond process zone, the crack growth 
resistance approaches the steady-state solution. 
The upper bound toughness is deduced by 
obtaining J~ from Equations 3 and 11 and 
equating Jt to J~ (Equation 12) to give: 

2 "+2 In [h/R]] (14) 
jc ~ = jo 1 _ f +  (n + 1 ~ Io J 

Typically, for filled polymers the work harden- 
ing rate is low [3, 4], n -~ 0.2. With this choice 
for n, the upper bound toughness becomes: 

j [  = J~ -- f + 0.8 In (h/R)]. (15) 

where the zone width, h, can be approximately 
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related to the yield strength, via the plane strain 
relation [8]: 

h L 0"2Y J g(n) (16) 

where g ~ 1/4 for n = 0.2. 
A more complete solution for the steady state 

toughening can be obtained from Equation 10 
as;  

2n+2 
j ~  = jo 1 - f +  (n + 1)/ ,In(h/R) 

2"+' (n4 + l)~176 Lay--~-~.RJJ~ ](. ,)/(.+,~ } 
(17a) 

which for n = 0.2 becomes: 

j ~  = j O [ l  - f +  0 . 8 I n ( h / R ) -  0.06 

O.yjO ( jo -]2/3] (17b) 

• es j 

The specific dependence of J~ on h/R  con- 
tained in the preceding formulas can be directly 
attributed to the selected form of the constitutive 
law (Equation 5). More realistic constitutive 
laws would undoubtedly yield a different func- 
tional dependence [5-7]. However, the general 
trends should be unaffected. 

4. Comparison wi th  experiment 
Trends in the toughness with the volume frac- 
tion and size of particulates can be most expedi- 
ently predicted using the upper bound formula 
(Equation 15), subject to the availability of inde- 
pendent determinations of the zone height, h. 
Such determinations have not been conducted, 
except in one instance [4] (Table I). In lieu of 
direct determinations of h, estimates may be 
obtained from Equation 16, provided that 
trends in modulus and yield strength are inde- 
pendently determined. Appropriate data are 
available for a glass filled epoxy (Table I). Note 
that, in the one instance for which h has been 
independently measured, the agreement with the 
value predicted from Equation 18 is relatively 
good. The toughness may be deduced from these 
data by combining Equations 15 and 16 to give: 

F E J: ] 
j ~ / j o  = 1 - f + 0.8 in L4a:yRj (18) 

T A B L E  I Experimental data for glass sphere filled 
epoxy [4] (y  = 0 .2mmmin -1) 

f ay (MPa) E(MPa)  Jlc(J m 2 ) h(#m) 

System I: ( R )  ~ 30pm 

0.1 40 3.5 430 240 
0.2 35 4.5 510 470 
0.3 25 5.5 590 1290 

System lI: ( R )  ~ 13#m 

0.1 40 3.5 550 300 
0,2 35 4.5 690 630 
0.3 25 5.5 900 2000 

Measured h ( f  = 0.25, ( R )  = 30/~m) = 600/~m [4]. 

Before proceeding with the prediction, the 
choice of the reference toughness, jo, must be 
consider. It is inappropriate to select the tough- 
ness of the unfilled polymer because, in the 
absence of particulates, alternative inelastic 
toughening mechanisms (e.g. craze growth) are 
activated. Predictions afforded by Equation 18 
only pertain when the same inelastic process 
zone mechanisms operate. The application of 
Equation 18 must, therefore, be restricted to the 
prediction of trends in toughness amongst  par- 
ticulate-filled systems. Consequently, one par- 
ticulate system is used as a reference and the 
relative behaviour of the other system is deter- 
mined. The reference system selected is the 
material containing 10% (by volume) of the 
larger ( ( R )  = 30#m) glass spheres. The 
toughnesses relative to this system are predicted 
from Equation 18 and plotted in Fig. 6. A com- 
parison with the measured toughnesses (Fig. 6) 
indicates good consistency for both particle 
radii. The approach thus appears to have merit 
and warrants further investigation. 

5. Concluding remarks 
A method of relating the toughness of a par- 
ticulate filled polymer to an independently deter- 
mined stress-strain curve for the composite has 
been demonstrated, using an idealized con- 
stitutive law. The analysis illustrates trends in 
particulate volume fraction and size and seems 
to predict behaviour consistent with measured 
trends. 

Further understanding of particulate tough- 
ening based on the present concepts requires a 
superior characterization of the non-linear 
behaviour in the process zone, based on micro- 
mechanics models of the debonding, 
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Figure 6 A comparison of  trends in tough- 
ness predicted from the present analysis 
with experimental data. The toughness of  
the system with 10% of  4 0 # m  radius 
spheres is taken as the reference. 

microcracking and plasticity. More realistic con- 
stitutive laws can then be derived and used in a 
quantitative mode to predict trends in tough- 
ness. It would also be expedient to obtain direct 
measurements of  the process zone width in the 
crack wake. Such determinations would con- 
stitute a superior measure of the utility of  the 
present approach, as well as providing an inde- 
pendent assessment of  the deformation charac- 
teristics within the process zone. 
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